Nasa: 50 years of global cooling thanks to Grand Minimum

Grand Minimum May Usher In 50 Years Of Global Cooling
Reduced sunspot activity has been observed and indicates the sun is heading into a 50 year reduced solar activity similar to what happened in the mid-17th century.
Comparison to similar stars indicates the reduced activity will cause 0.25% less UV for 50 years.
Modelling indicates that this will cause a few tenths of a degree of cooling.
This will counteract global warming for 50 years.
The cooldown would be the result of what scientists call a grand minimum, a periodic event during which the Sun’s magnetism diminishes, sunspots form infrequently, and less ultraviolet radiation makes it to the surface of the planet. Scientists believe that the event is triggered at irregular intervals by random fluctuations related to the Sun’s magnetic field.
Scientists have used reconstructions based on geological and historical data to attribute a cold period in Europe in the mid-17th Century to such an event, named the “Maunder Minimum.” Temperatures were low enough to freeze the Thames River on a regular basis and freeze the Baltic Sea to such an extent that a Swedish army was able to invade Denmark in 1658 on foot by marching across the sea ice.
A team of scientists led by research physicist Dan Lubin at Scripps Institution of Oceanography at the University of California San Diego has created for the first time an estimate of how much dimmer the Sun should be when the next minimum takes place.
There is a well-known 11-year cycle in which the Sun’s ultraviolet radiation peaks and declines as a result of sunspot activity. During a grand minimum, Lubin estimates that ultraviolet radiation diminishes an additional seven percent beyond the lowest point of that cycle. His team’s study, “Ultraviolet Flux Decrease Under a Grand Minimum from IUE Short-wavelength Observation of Solar Analogs,” appears in the publication Astrophysical Journal Letters and was funded by the state of California.
“Now we have a benchmark from which we can perform better climate model simulations,” Lubin said. “We can therefore have a better idea of how changes in solar UV radiation affect climate change.”
Lubin and colleagues David Tytler and Carl Melis of UC San Diego’s Center for Astrophysics and Space Sciences arrived at their estimate of a grand minimum’s intensity by reviewing nearly 20 years of data gathered by the International Ultraviolet Explorer satellite mission. They compared radiation from stars that are analogous to the Sun and identified those that were experiencing minima.
https://www.climatedepot.com/2018/02/08/solar-minimum-may-bring-50-years-of-global-cooling/
the NASA Link ( it wouldn't allow me to copy anything to paste unfortunately...)
https://science.nasa.gov/science-news/news-articles/solar-minimum-is-coming
Reduced sunspot activity has been observed and indicates the sun is heading into a 50 year reduced solar activity similar to what happened in the mid-17th century.
Comparison to similar stars indicates the reduced activity will cause 0.25% less UV for 50 years.
Modelling indicates that this will cause a few tenths of a degree of cooling.
This will counteract global warming for 50 years.
The cooldown would be the result of what scientists call a grand minimum, a periodic event during which the Sun’s magnetism diminishes, sunspots form infrequently, and less ultraviolet radiation makes it to the surface of the planet. Scientists believe that the event is triggered at irregular intervals by random fluctuations related to the Sun’s magnetic field.
Scientists have used reconstructions based on geological and historical data to attribute a cold period in Europe in the mid-17th Century to such an event, named the “Maunder Minimum.” Temperatures were low enough to freeze the Thames River on a regular basis and freeze the Baltic Sea to such an extent that a Swedish army was able to invade Denmark in 1658 on foot by marching across the sea ice.
A team of scientists led by research physicist Dan Lubin at Scripps Institution of Oceanography at the University of California San Diego has created for the first time an estimate of how much dimmer the Sun should be when the next minimum takes place.
There is a well-known 11-year cycle in which the Sun’s ultraviolet radiation peaks and declines as a result of sunspot activity. During a grand minimum, Lubin estimates that ultraviolet radiation diminishes an additional seven percent beyond the lowest point of that cycle. His team’s study, “Ultraviolet Flux Decrease Under a Grand Minimum from IUE Short-wavelength Observation of Solar Analogs,” appears in the publication Astrophysical Journal Letters and was funded by the state of California.
“Now we have a benchmark from which we can perform better climate model simulations,” Lubin said. “We can therefore have a better idea of how changes in solar UV radiation affect climate change.”
Lubin and colleagues David Tytler and Carl Melis of UC San Diego’s Center for Astrophysics and Space Sciences arrived at their estimate of a grand minimum’s intensity by reviewing nearly 20 years of data gathered by the International Ultraviolet Explorer satellite mission. They compared radiation from stars that are analogous to the Sun and identified those that were experiencing minima.
https://www.climatedepot.com/2018/02/08/solar-minimum-may-bring-50-years-of-global-cooling/
the NASA Link ( it wouldn't allow me to copy anything to paste unfortunately...)
https://science.nasa.gov/science-news/news-articles/solar-minimum-is-coming